Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.

نویسندگان

  • Chong Wei Jin
  • Shao Ting Du
  • Wei Wei Chen
  • Gui Xin Li
  • Yong Song Zhang
  • Shao Jian Zheng
چکیده

The increases in atmospheric carbon dioxide (CO(2)) concentrations can enhance plant growth and change their nutrient demands. We report that when tomato (Lycopersicon esculentum 'Zheza 809') plants were grown in iron (Fe)-limited medium (with hydrous ferric iron oxide) and elevated CO(2) (800 microL L(-1)), their biomass and root-to-shoot ratio were greater than plants grown in ambient CO(2) (350 microL L(-1)). Furthermore, the associated increase in Fe concentrations in the shoots and roots alleviated Fe-deficiency-induced chlorosis. Despite the improved nutrient status of plants grown in Fe-limited medium under elevated CO(2), the Fe-deficiency-induced responses in roots, including ferric chelate reductase activity, proton secretion, subapical root hair development, and the expression of FER, FRO1, and IRT genes, were all greater than plants grown in the ambient CO(2). The biomass of plants grown in Fe-sufficient medium was also increased by the elevated CO(2) treatment, but changes in tissue Fe concentrations and Fe deficiency responses were not observed. These results suggest that the improved Fe nutrition and induction of Fe-deficient-induced responses in plants grown in Fe-limited medium under elevated CO(2) are caused by interactions between elevated CO(2) and Fe deprivation. Elevated CO(2) also increased the nitric oxide (NO) levels in roots, but treatment with the NO scavenger cPTIO inhibited ferric chelate reductase activity and prevented the accumulation of LeFRO1, LeIRT1, and FER transcripts in roots of the Fe-limited plants. These results implicate some involvement of NO in enhancing Fe-deficiency-induced responses when Fe limitation and elevated CO(2) occur together. We propose that the combination of elevated CO(2) and Fe limitation induces morphological, physiological, and molecular responses that enhance the capacity for plants to access and utilize Fe from sparingly soluble sources, such as Fe(III)-oxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نقش سیلیکون در کاهش تنش‏ کمبود و سمیت آهن در کشت هیدروپونیک گیاه برنج (Oryza sativa L.)

Silicon (Si) nutrition may alleviate biotic and abiotic stresses including heavy metal deficiency and toxicity in plants. Iron deficiency and toxicity are important limiting factors in growth of rice. In the present study, role of Si nutrition on alleviation of iron deficiency and toxicity was investigated in rice plants. Plants were cultivated in greenhouse in hydroponics, using Yoshida soluti...

متن کامل

Nutritional responses of Thymus exposed leaf spraying under soil nitrogen deficiency

Thyme is a valuable plant used in medicine, perfumery and food industry. Mineral deficiencies often limit the growth of plants. Nitrogen deficiency in agricultural soils is a problem throughout the world. The present study evaluated effects of applying Fe and Zn in absorption of some important nutrients of Thymus vulgaris...

متن کامل

Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture.

Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the l...

متن کامل

Cloning and characterization of high-CO2-specific cDNAs from a marine microalga, Chlorococcum littorale, and effect of CO2 concentration and iron deficiency on the gene expression.

Two cDNA clones exclusively induced under an extremely high-CO2 concentration (20%) were isolated from Chlorococcum littorale by differential screening and named HCR (high-CO2 response) 1 and 2, respectively. The amino acid sequence of the protein encoded by HCR2 exhibited homology to the gp91-phox protein, a critical component of a human phagocyte oxidoreductase, and to the yeast ferric reduct...

متن کامل

Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover.

Phenolic compounds are frequently reported to be the main components of root exudates in response to iron (Fe) deficiency in Strategy I plants, but relatively little is known about their function. Here, we show that removal of secreted phenolics from the root-bathing solution almost completely inhibited the reutilization of apoplastic Fe in roots of red clover (Trifolium pratense). This resulte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 150 1  شماره 

صفحات  -

تاریخ انتشار 2009